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An approximate method for analyzing the response of Preisach hysteretic systems with
non-local memory under stationary Gaussian excitation is proposed. The covariance matrix
equation of system response is derived. The cross correlation function of Preisach hysteretic
force and response in the covariance equation is evaluated based on the switching
probability analysis and the Gaussian approximation of response process and an explicit
expression for the cross correlation function is given for the case of symmetric Preisach
weighting function. It is shown that the numerical result obtained by using the proposed
method is in good agreement with that from digital simulation.
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1. INTRODUCTION

Non-linear hysteresis behavior exists widely in mechanical and structural systems [1}4],
where the restoring force depends on not only the instantaneous deformation but also the
past history of deformation [5]. Furthermore, there has been an increasing interest recently
in using smart materials [6}8] such as piezoceramics, shape memory alloys, and
electro-/magneto-rheological #uids, which exhibit signi"cant hysteresis. Various analytical
models [9}12] have been proposed for representing the hysteretic constitutive relationship.
However, almost all hysteresis models used in mechanical and structural disciplines can
only represent hysteresis with local memory. They cannot be used to describe the
complicated hysteresis behavior such as the crossing of minor loops which can arise in real
materials. In order to more accurately capture such complicated constitutive behavior with
non-local memory, a Preisach integral model [1}4] has been developed in physics and
mathematics but little work has been done in the context of mechanical and structural
engineering until recently.
In the "elds of mechanical and structural engineering, the dynamic loading acting on

hysteretic systems is usually random in nature. For strongly non-linear hysteretic systems, it
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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is extremely di$cult to analytically determine the exact random response and thus
some approximate solution techniques have been developed, including the equivalent
linearization method [13}17] and the stochastic averaging method [18}24]. The random
dynamic responses of bilinear and Bouc}Wen hysteretic systems have been studied by using
these two methods [5, 25}30]. However, only the mean output of the Preisach model to
stochastic input has been investigated [31, 32].
In the present paper, the random response of Preisach hysteretic systems is investigated.

The covariance matrix equation of system response is derived. The cross correlation
functions of Preisach hysteretic force and response in the covariance equation are obtained
based on the switching probability analysis and the Gaussian approximation of response
process. The switching probabilities are calculated by using the mathematical machinery of
exit problem, and, in particular, approximate results are obtained for the case of symmetric
Preisach weighting function. Finally, an example of Preisach hysteretic system with
symmetric weighting function under Gaussian white noise excitation is presented to
illustrate the application of the proposed method.

2. PREISACH HYSTERESIS MODEL

The Preisach model for hysteresis is expressed in terms of the following integral:

z"���)�
� (�, �)�L ��(x) d�d�, (1)

where z and x denote hysteretic force and displacement, respectively, �(�, �) is a weighting
function called Preisach function, � and � are integral variables in a limiting triangle S on
Preisach plane (�, �) (see Figure 1), and �L ��(x) is called relay hysteresis operator as shown in
Figure 2. The operator takes the value #1 or !1 corresponding to &&up'' or &&down''
positions of the relay, respectively, and is represented by the equation

�L ��(x)"�
#1, ascending x'� or descending x'�,

!1, ascending x(� or descending x(�.
(2)

The Preisach hysteresis model in equation (1), expressed as the superposition of
a continuous family of elementary rectangular loops, can be interpreted in terms of the
Figure 1. Preisach plane.



Figure 2. Relay hysteresis operator.

RESPONSE OF PREISACH HYSTERETIC SYSTEMS 39
spectral decomposition of a complicated hysteretic constitutive law into the simplest relay
hysteresis operators. The Preisach hysteresis behavior is completely characterized by the
weighting function �(�, �). For an arbitrary displacement x (t), the hysteretic force z(t) can be
determined by the weighting function together with a staircase line ¸ which divides the
Preisach plane into two parts, S� and S�, corresponding to the &up' and &down' positions of
the relay. Each vertex of interface line ¸ is associated with past local minimum m

�
or

maximum M
�
of the displacement (k"1, 2, 2 ). Therefore, the Preisach hysteretic force

depends on not only the instantaneous displacement but also the non-local displacement
history in terms of selective memory, i.e., it has the characteristics of non-local memory.
Note that the hysteretic force z(t) is independent of the magnitude of velocity xR .

3. MEAN SQUARE RESPONSE OF PREISACH HYSTERETIC SYSTEMS

Consider the response of a Preisach hysteretic system to random excitation governed by
the following equation:

XG #2�XQ #g (X)#Z (X, XQ )"f (t), (3)

where X denotes displacement, � is viscous damping coe$cient, g (X) is a non-linear
restoring force with g (!X )"!g (X), Z denotes Preisach hysteretic force governed by
equation (1), and f (t) represents an external random excitation.
Under the excitation of stationary Gaussian process with zero mean, the mean stationary

response of Preisach hysteretic system (3) is equal to zero since g (0)"0 and the hysteretic
force Z in equation (1) approaches zero [31]. By introducing state vector Y"[X,XQ ]� and
rewriting second order di!erential equation (3) in the form of "rst order di!erential
equations for the state vector, the following covariance matrix equation of system response
can be obtained:

W� (t)"E[Y� (t)Y�(t)]#E[Y(t)Y� � (t)]

"U(t)#U�(t)#V(t)#V�(t)#D
�
(t), (4)

where E[)] denotes expectation operator

W"E[YY�]"�
E[X�] E[XXQ ]
E[XQ X] E[XQ �] �, (5a)
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U"�
E[XXQ ] E[XQ �]

!E[Xg]!2�E[XXQ ] !E[XQ g]!2�E[XQ �]�, (5b)

V"�
0 0

!E[ZX] !E[ZXQ ]�, D
�
"�

0 !E[Xf ]

!E[Xf ] !2E[XQ f ]�. (5c)

For the stationary Gaussian white noise excitation f (t) with intensity D, the correlation
matrix D

�
of excitation and response is of the form

D
�
"�

0 0

0 D�. (6)

The covariance matrix W of the stationary response is a constant matrix and equation (4)
becomes

U#U�#V#V�#D
�
"0. (7)

In the case of linear restoring force, i.e., g (X)"kX, k is a constant, the correlation matrix
U is of the form

U"AW, (8a)

where

A"�
0 1

!k !2��. (8b)

By using equation (1) the cross correlation functions E[ZX] and E[ZXQ ] of hysteretic
force and response in correlation matrix V can be expressed as follows:

E[ZX]"���)�
� (�, �)E[�L ��(X)X] d�d�, (9)

E[ZXQ ]"���)�
� (�, �)E[�L ��(X)XQ ] d�d�. (10)

Since the elementary hysteresis operator �L ��(X) takes the value either #1 or !1, the
correlation function E[�L ��(X)X] can be obtained as follows:

E[�L ��(X)X]"E[#X]P��L ��(X)"#1�#E[!X]P��L �� (X)"!1�

"(E[X 	
�*�]P��L �� switching at ��

#E[X 	
�*�]P��L �� switching at ��)P��L ��(X)"#1�

#(E[!X 	
�)�]P��L �� switching at ��

#E[!X 	
�)�]P��L �� switching at ��)P��L ��(X )"!1�

"(E[X 	
�*0!	X 		

�3(0,�)]q�
#E[X 	

�*0!	X 		
�3(0,�)]q�)P��L �� (X)"#1�



RESPONSE OF PREISACH HYSTERETIC SYSTEMS 41
#(E[!X 	
�)0!	X 		

�3(0,�)]q�

#E[!X 	
�)0!	X 		

�3(0,�)]q�)P��L ��(X)"!1�

"(E[X 	
�*0]!E[ 	X 		

�3(0,�)])q�

#(E[X 	
�*0!E[	X 		

�3(0,�)])q�

"�
�
E[ 	X 	]!E[ 	X 		

�3(0,�)]q�!E 	X 		
�3(0,�)]q�, (11)

where P�)� denotes probability operator. The notations q�"P��L �� switching at �� and
q�"P��L �� switching at �� denote the probability of �L ��(X) switching from !1 to #1 at
X"� and from #1 to !1 at X"� respectively. There exist the probability relations
P��L ��(X)"#1�#P��L ��(X)"!1�"1 and q�#q�"1. Similarly, correlation function

E[�L ��(X)XQ ]"E[#XQ ]P��L ��(X)"#1�#E[!XQ ]P��L �� (X)"!1�

"(E[XQ 	
�*�,XQ *0]P��L �� switching at ��

#E[XQ 	
�*�,XQ )0]P��L �� switching at ��)P��L ��(X)"#1�

#(E[!XQ 	
�)�,XQ *0]P��L �� switching at ��

#E[!XQ 	
�)�,XQ )0]P��L �� switching at ��)P��L ��(X)"!1�

"(E[ 	XQ 		
�*0,XQ *0!sgn(�)	XQ 		

�3(0,�),XQ *0]q�

#E[!	XQ 		
�*0,XQ )0#sgn(�)	XQ 		

�3(0,�),XQ )0]q�)P��L ��(X)"#1�

#(E[!	XQ 		
�)0,XQ *0!sgn(�) 	XQ 		

�3(0,�),XQ *0]q�

#E[ 	XQ 		
�)0,XQ )0#sgn(�) 	XQ 		

�3(0,�), XQ )0]q�)P��L ��(X)"!1�

"sgn(!�)E[ 	XQ 		
�3(0,�),XQ *0]q�#sgn(�)E[ 	XQ 		

�3(0,�),XQ )0]q�

"�
�
sgn(!�)E[ 	XQ 		

�3(0,�)]q�#�
�
sgn(�)E 	[XQ 		

�3(0,�)]q� . (12)

For a stationary Gaussian random excitation, the response of the equivalent linear
system of equation (3) would be Gaussian. Under the assumption of Gaussian response, the
mean absolute displacement and velocity in equations (11) and (12) can be evaluated in
terms of mean square response as follows:

E[ 	X 	]"�
2E[X�]



, (13a)

E[ 	X 		X3(0,�)]"�
E[X�]

2
 �1!exp�!
��

2E[X�]��, (13b)

E[ 	X 		X3(0,�)]"�
E[X�]

2
 �1!exp�!
��

2E[X�]��, (13c)
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E[ 	XQ 		X3(0,�)]"�
E[XQ �]

2

erf �

�

�2E[X�]� sgn(�), (13d)

E[ 	XQ 		X3(0,�)]"�
E[XQ �]
2


erf �
�

�2E[X�]� sgn(�), (13e)

erf (x)"
2

�
 �
�

�

e���du, (13f )

where erf ( ) ) is the error function which is an odd function, i.e., erf (!x)"!erf (x), and has
the properties erf (0)"0 and erf ($R)"$1.

4. SWITCHING PROBABILITY

The switching probabilities q� and q� in equations (11) and (12) can be calculated by using
the mathematical machinery of an exit problem [32]. Since q�#q�"1, only one switching
probability, for example q�, needs to be calculated. Consider the time evolution of response
process. The switching probability q� is the sum of the probabilities of disjoint events of even
and odd switching numbers and thus, for di!erent initial states it can be expressed as
follows:

q� (t)"�
1

2
P�

�
(t)#

�
�
���

P�
��
(t) for �L ��(x�)"#1,

1

2
P�

�
(t)#

�
�
���

P�
����

(t) for �L ��(x�)"!1,

(14)

where P$

�
(t) are the probabilities of j switchings during time interval (0, t) for initial states

�L ��(x�)"$1, i.e.,

P$

�
(t)"P�

j switchings during time

interval (0, t) 	�L ��(x�)"$1� ( j"0, 1, 2, 2 ). (15)

�L ��(X) switching at � (or �) takes place at the moment when the response process
X starting from point x

�
or � (or �) exits from semi-in"nite interval (!R, �) [or (�,#R)].

Based on the mathematical machinery of this exit problem, the switching probability
P$

�
can be expressed as follows:

P#

��
(t)"���(t, x�)*��(t, �)*[�� (t, �)*��(t, �)*]����P�(t, �), (16a)

P!

����
(t)"��� (t, x�)*[��(t, �)*��(t, �)*]��P�(t, �). (16b)

where &&*'' denotes convolution operator, ��(t, �) [��(t, �)] represents the probability density
as a function of time t for the event of only one �L ��(X) switching at � (�) for response process
X starting from point � (�), ���(t, �) [���(t, �)] is the probability density function of one
�L �� switching at � (�) with starting point x

�
, and P�(t, �) represents the probability function

of no �L ��(X ) switching at � for response process X starting from point �, or the probability
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of no exiting from semi-in"nite interval (�,#R) during time interval (0, t). Substituting
equations (16a) and (16b) into equation (14) leads to

q�(t)"�
1

2
P��(t, x�)#

�
�
���

���(t, x�)*��(t, �)*[��(t, �)*��(t, �)*]����P�(t, �), �L ��(x�)"#1,

1

2
P��(t, x�)#

�
�
���

���(t, x�)*[��(t, �)*��(t, �)*]��P�(t, �), �L ��(x�)"!1,

(17)

where P�� (t, x�) [P��(t, x�)] is the probability function of no �L �� switching at �(�) for
starting point x

�
. According to the exit theory of stochastic process, no switching

probability functions P� (t, x) and P� (t, x) are governed by the following backward
Kolmogorov equation:

�P
	

�t
"m (x)

�P
	

�x
#

� (x)

2

��P
	

�x�
(18a)

with initial and boundary conditions

P
	
(0, x)"1, P

	
(t, c)"0, (18b)

where c stands for � or �; m and  are the drift and di!usion coe$cients of response process
X. Under the Gaussian assumption of response, the drift and di!usion coe$cients are
evaluated in terms of mean square response as follows:

m (X)"
!D

2E[X�]
x, � (X)"D. (19)

By applying the Laplace transform to equation (18a) with equation (18b), the transformed
probability function of no switching is obtained as follows:

PI
	
(s, x)"

1

s �1!e����	�	
�
���
D

���
���
�
(x/�E[X�])

D
���
���
�

(c/�E[X�])�, (20)

where D
�

(x) is a parabolic cylinder function with constant n; c"� or �. Then the
transformed probability density function of one switching is

�
	
(s, x)"e����	�	
�
���

D
���
���
�

(x/�E[X�])

D
���
���
�

(c/�E[X�])
. (21)

The transformed switching probability qJ �(s) can be obtained as follows:

qJ �(s)"
1

2
PI ��(s, x�)#

�
�
���

�J �� (s, x�)�J � (s, �)[�J � (s, �)�J � (s, �)]����PI � (s, �)

"

1

2
PI ��(s, x�)#

�J ��(s, x�)�J �(s, �)
1!�J �(s, �)�J �(s, �)

PI � (s, �)

"

1!�J ��(s, x�)
2s

#

�J �� (s, x�)�J � (s, �)[1!�J � (s, �)]
s[1!�J �(s, �)�J �(s, �)]

(22a)
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for the initial state �L �� (x�)"#1 and

qJ �(s)"
1

2
PI ��(s, x�)#

�
�
���

�J ��(s, x�)[�J �(s, �)�J �(s, �)]��PI � (s, �)

"

1

2
PI ��(s, x�)#

�J �� (s, x�)
1!�J �(s, �)�J �(s, �)

PI � (s, �)

"

1!�J ��(s, x�)
2s

#

�J ��(s, x�)[1!�J �(s, �)]
s[1!�J �(s, �)�J �(s, �)]

(22b)

for the initial state �L ��(x�)"!1. The switching probability q� (t) is obtained from the
inverse Laplace transform of qJ �(s) and the stationary switching probability by letting
tPR. By substituting q� into expressions (9)}(12) and then into equation (5c), the mean
square stationary response can be obtained by solving equation (7).
In fact, most Preisach hysteresis has wiping-out and congruency properties [1}3] such

that the weighting function � (�, �) possesses mirror symmetry with respect to the line
�#�"0 on the Preisach plane, i.e., � (!�,!�)"� (�, �). For the response process with
zero mean, the symmetric weighting function means that possible �L ��(X) switching events
appear in couples, and the two switching probabilities of each couple are almost equal.
Thus, by using the relation q�#q�"1 the switching probabilities are obtained as
q�:q�:1/2. The corresponding correlation functions E[�L �� (X)X] in equation (11) and
E[�L ��(X)XQ ] in equation (12) become

E[�L ��(X )X]"�
�
(E[ 	X 	]!E[ 	X 		X3(0,�)]!E[ 	X 		X3(0,�)])

"�
E[X�]

8

(e���
�
���#e���
�
��� ), (23)

E[�L ��(X )XQ ]"�
�
E[ 	XQ 		X3(�,�)]

"�
E[XQ �]
32
 �erf �

�

�2E[X�]�!erf �
�

�2E[X�]��. (24)

For the case of unsymmetrical Preisach weighting function (in this case, non-linear
restoring force g (X) can also be non-antisymmetrical), the mean displacement response
does not vanish even if the stationary excitation has zero mean. In this case one more
equation for mean displacement response has to be added except covariance equation (4) or
(7) and the mean and mean square responses are obtained by solving these two equations
simultaneously. The procedure developed from equations (9) to (22) for evaluating the
correlation function of hysteretic force and response holds in this case provided X is
replaced byX!E[X]. In principle, it is possible to calculate switching probabilities q� and
q�, especially for the case of stationary response. However, the calculation is complicated
and a simpli"ed approach needs to be developed.

5. EXAMPLE

Consider a Preisach hysteretic system with linear restoring force subjected to Gaussian
white noise excitation. Suppose that the Preisach weighting function is symmetric with
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respect to the line �#�"0, i.e.,

�(�, �)"�
1

2
�
exp�!

(�#�)�#(�!�)�
2� �

�
�
)�)0, 0)�)�

�
,

0 elsewhere, (25)

where  and � are the model parameters governing the width and area of the hysteresis loop;
�
�
"!�

�
. By substituting equations (25), (23) and (24) into (9) and (10), the following cross

correlation functions E[ZX) and E (ZXQ ] of hysteretic force and response are obtained:

E[ZX]"
E[X�]

�32
(�#E[X�])
e���
�����
���	��erf �

�

�2�#erf �
�
�
!�

�2 ��

��erf �
�

�2�
E[X�]

�#E[X�]�!erf �
�
�

�2�
�#E[X�]

E[X�]

#

�

�2�
E[X�]

�#E[X�]��#�erf �
�

�2�!erf �
�
�
#�

�2 ��

��erf �
�

�2�
E[X�]

�#E[X�]�#erf �
�
�

�2�
�#E[X�]

E[X�]

!

�

�2�
E[X�]

�#E[X�]���, (26)

E[ZXQ ]"�
E[XQ �]
32
 ��erf �

�

�2�!erf �
�
�
#�

�2 ��

��erg �
�
�
!�

�2
, � (u)"

�2u#�

�2E[X�]�!erg�
!�

�2
, �(u)"

�2u#�

�2E[X�]��

!�erf �
�
�
!�

�2 �#erf �
�

�2�� )�erg �
�

�2
, �(u)"

�2u!�

�2E[X�]�

!erg �
�
�
#�

�2
, �(u)"

�2u!�

�2E[X�]���, (27)

erg[x, y(u)]"
2

�
 �
�

�

e��� erf [y (u)] du. (28)

Numerical calculation is performed for the following parameter values:
�
�
"!�

�
"!4)0, "0)1, �"1)0, k"1)0, �"0)1 and D"2)0. The cross correlation

function of hysteretic force and displacement is given in Tables 1 and 2 for various values of
parameters  and � respectively. It is seen that the correlation function values obtained by
using the proposed method and from digital simulation are in good agreement. Thus, the
inference of equal switching probabilities q� and q� in the case of symmetric Preisach



TABLE 1

Cross correlation function for hysteresis parameter �"1)0 (E[ZX]2analytical value;
E[ZX]

�
2from digital simulation)

 E[ZX] E[ZX]
�

Error (%)

0)20 0)48376 0)48279 0)20
0)15 0)48388 0)48742 0)73
0)10 0)48393 0)49137 1)51
0)05 0)48394 0)49374 1)98
0)01 0)48394 0)49512 2)26

TABLE 2

Cross correlation function for hysteresis parameter "0)1 (E[ZX]2analytical value;
E[ZX]

�
2from digital simulation)

� E[ZX] E[ZX]
�

Error (%)

0)5 0)70150 0)71298 1)61
0)6 0)66433 0)67453 1)51
0)7 0)62292 0)63101 1)28
0)8 0)57834 0)58320 0)83
0)9 0)53166 0)53586 0)78
1)0 0)48393 0)49137 1)51
1)1 0)43615 0)44762 2)56
1)2 0)38921 0)40326 3)48
1)3 0)34390 0)35809 3)96
1)4 0)30087 0)31345 4)01

Figure 3. Mean square responses of displacement and velocity versus excitation intensity.
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weighting function is reasonable to a signi"cant extent. The mean square responses E[X�]
and E[XQ �] of the Preisach hysteretic system as functions of excitation intensity obtained by
solving equation (7) are shown in Figure 3. Since the accuracy of the solution to equation (7)
depends mainly on that of cross correlation function of hysteretic force and response, rather



Figure 4. Representative sample functions. (a) Gaussian white noise excitation, (b) hysteretic force, (c)
displacement response, (d) velocity response.
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accurate mean square responses can be expected based on the results in Tables 1 and 2.
A set of representative sample functions of the Gaussian white noise excitation and response
are shown in Figure 4. It is seen that the displacement and velocity responses look like
narrow band processes while the hysteretic force appears to be a rather complicated process
due to its non-local memory.
It is seen from Tables 1 and 2 that the error in the calculation of E[ZX] depends on the

values of  and �. The reasons for these dependences are as follows. It is known from
equation (25) that the Preisach weighting function �(�, �) is a product of two independent
Gaussian probability densities for � and �.  is the variance of both � and � while !� and
#� are the means of � and � respectively. In the calculation of E[ZX] in Tables 1 and 2,
the same discrete grid was used. For larger , this grid is "ner and so the error is smaller. For
smaller , on the contrary, this grid is grosser and so the error is larger. Similarly, the larger
error for smaller and larger � is also due to the grosser of the grid in these cases. In fact, there
is an optimal value of � for which the error is the smallest. It is �"0)9 for Table 2.
Obviously, the result of E[ZX] can be improved by using a "ner grid.

6. CONCLUSIONS

The Preisach hysteresis model used to model the complicated constitutive relationship
with non-local memory can be interpreted in terms of the spectral decomposition of the
hysteretic constitutive law into simple hysteresis operators. An approximate method for
analyzing the response of Preisach hysteretic systems to stationary Gaussian excitation has
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been developed based on the switching probability analysis and the Gaussian
approximation of the response. The cross correlation function of Preisach hysteretic force
and response has been evaluated by using mean square response and switching probabilities
of relay hysteresis operators, and in particular, is simpli"ed for the case of symmetric
Preisach weighting function. The numerical result for the correlation function obtained by
using the proposed method is in good agreement with that from digital simulation and thus
rather accurate mean square responses can be expected.
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